Μετάβαση στο κύριο περιεχόμενο

Νέο έτος; Νέα στήλη! Μια μαθηματική πρόταση το μήνα από τον...

Φέτος, μπήκε με το δεξί στο lisari.blogspot.com ο φίλος και αγαπητός μέλος της lisari team, Γιώργος Χασάπης!

Ο Γιώργος κάθε μήνα θα μας παρουσιάζει από μια σημαντική πρόταση των μαθηματικών. Μια πρόταση που θα αφορά είτε τους μαθητές είτε τους φοιτητές. Συνολικά θα παρουσιαστούν από εδώ 12 προτάσεις. Στο τέλος του έτους θα δημιουργήσουμε ένα ενιαίο αρχείο και θα το αναρτήσουμε λίγο πριν τη λήξη του έτους.

Πρόταση 5η (Μαΐου): Ανάλυση
Η πέμπτη πρόταση του Γιώργου είναι βασική και απλή μέχρι και τους μαθητές της Γ Λυκείου! Κυρτή και άνω φράγμα! Είναι εφικτό;

"Δεν υπάρχει κυρτή συνάρτηση f : R→R  (σύμφωνα με τον ορισμό του σχολικού βιβλίου) για την οποία υπάρχει MεR τέτοιο ώστε f (x) < M, για κάθε xεR."

Με λίγα λόγια:

"Δεν υπάρχει κυρτή συνάρτηση και άνω φραγμένη στο R. Κάτι ανάλογο ισχύει και για τη κοίλη και κάτω φραγμένη¨. 

Για να αποθηκεύσετε το αρχείο πατήστε εδώ.

Πρόταση 4η (Απριλίου): Ανάλυση
Η τέταρτη πρόταση του Γιώργου καταπιάνεται με την περίοδο συνάρτησης. Η απόδειξη είναι απαιτητική αφού χρειάζονται γνώσεις από Πανεπιστημιακή ύλη. 

"Έστω f :R →R μια μη σταθερή περιοδική συνάρτηση η οποία έχει τουλάχιστον ένα σημείο συνέχειας. Τότε η f έχει ελάχιστη θετική περίοδο, δηλαδή υπάρχει Τ > 0 περίοδος της f τέτοιο ώστε κανένα σημείο του διαστήματος (0,T) να είναι περίοδος της f".

Για να αποθηκεύσετε το αρχείο πατήστε εδώ.

Πρόταση 3η (Μαρτίου): Ανάλυση
Η τρίτη πρόταση του Γιώργου παρουσιάζει μεγάλο ενδιαφέρον αφού λέει κάτι πολύ απλό:

" Για μια συνεχή συνάρτηση f: ℝ → ℝ ισχύει η εξής ισοδυναμία: Η f είναι 1 − 1 αν και μόνο αν η f δεν έχει ακρότατα."

Η εξήγηση είναι απλή: Αν η f είναι συνεχής και 1 - 1, τότε (;) είναι γνησίως μονότονη, άρα δεν έχει ακρότατα. Φυσικά αυτή η πρόταση, όπως και το αντίστροφο, θέλει απόδειξη αφού δεν υπάρχει στο σχολικό βιβλίο!

Για να αποθηκεύσετε το αρχείο πατήστε εδώ.

Πρόταση 2η (Φεβρουαρίου): Ανάλυση
Η δεύτερη πρόταση είναι η έκδοση της ανισότητας του Hölder για συνεχείς συναρτήσεις, μία από τις σημαντικότερες ανισότητες της Ανάλυσης.

Για να αποθηκεύσετε το αρχείο πατήστε εδώ.

Πρόταση 1η (Ιανουαρίου): Ανάλυση
Η πρώτη πρόταση είναι διδακτική και μπορεί να παρουσιαστεί στην τάξη:

"Κάθε πολυωνυμική συνάρτηση f άρτιου βαθμού λαμβάνει μέγιστο ή ελάχιστο"

Συγκεκριμένα, αν ο συντελεστής του μεγιστοβάθμιου όρου της είναι:
•  θετικός, τότε η f λαμβάνει ελάχιστο στο R.
•  αρνητικός, τότε η f λαμβάνει  μέγιστο στο R.

Για να αποθηκεύσετε το αρχείο πατήστε εδώ.


Σχόλια

  1. Καλη αρχή λοιπόν!περιμενουμε πως κ πως και τα 12!

    ΑπάντησηΔιαγραφή
  2. Καλή αρχή και από εμένα και νομίζω ότι η επιτυχία είναι δεδομένη γιατί ο Γιώργος είναι εξαιρετικός συνάδελφος!!! Περιμένουμε και τα υπόλοιπα!!

    ΑπάντησηΔιαγραφή
  3. Πολύ καλή δουλειά! Περιμένουμε και τα υπόλοιπα.

    ΑπάντησηΔιαγραφή
  4. Συνάδελφοι χρόνια πολλά για την σημερινή εορτή.
    Επειδή μας ζητάνε από το σχολείο που έχουμε φτάσει στην ύλη της Γ Λυκείου, και επειδή έχω αφήσει το βιβλίο στο σχολείο, μπορεί να μου πει κάποιος που έχει το φετινό βιβλίο σπίτι του σε ποια σελίδα είναι οι κανόνες del Hospital?
    Έχω ένα βιβλίο σπίτι μου αλλά έχει μέσα μιγαδικούς και δεν ταιριάζουν οι σελίδες.
    Ευχαριστώ πολυ

    ΑπάντησηΔιαγραφή
    Απαντήσεις
    1. Δες εδώ https://lisari.blogspot.com/2020/03/blog-post_27.html

      είναι όλα τα σχολικά βιβλία σε ηλεκτρονική μορφή

      Διαγραφή

Δημοσίευση σχολίου

Εκτιμάμε τους ανθρώπους που σέβονται τους συνομιλητές τους και διδάσκουν ήθος από τα πληκτρολόγιά τους.

Το lisari είναι χώρος που ενώνει φωνές, κάνει τις διαφορετικές δυνάμεις ομόρροπες.

Είναι εδώ για να ενώσει τους μαθηματικούς και να εκφραστούν μέσα από ένα μέσο. Επομένως, οι αντεγκλήσεις και οι προσβολές δεν μας τιμούν και δεν βοηθούν το σκοπό του εγχειρήματος.

Σας ευχαριστούμε για τη συμμετοχή και το ήθος σας!

Μάκης Χατζόπουλος

Δημοφιλείς αναρτήσεις από αυτό το ιστολόγιο

Δέκα ασκήσεις τριγωνομετρίας για τη Β΄ Γυμνασίου

Ο αγαπητός συνάδελφος Νίκος Τσιμοράγκας από το Πειραματικό Γυμνάσιο Σύρου μας προσφέρει δέκα άλυτες ασκήσεις στην Τριγωνομετρία (2.1 και 2.2) για τους μαθητές της Β΄ Γυμνασίου. Για απευθείας αποθήκευση πατήστε εδώ.

Επαναληπτικό διαγώνισμα + απαντήσεις στην τριγωνομετρία (Β΄ Λυκείου - Άλγεβρα)

Αυτή την περίοδο τα περισσότερα σχολεία έχουν ολοκληρώσει το Κεφάλαιο 3ο: Τριγωνομετρία στην Άλγεβρα Β΄ Λυκείου και βρίσκονται στην αρχή των πολυωνύμων.  Ο μοναδικός συνάδελφος Μάκης Χατζόπουλος από το 3ο ΓΕΛ Κηφισιάς μας προσφέρει ένα επαναληπτικό διαγώνισμα (2 ωρών) + απαντήσεις στο κεφάλαιο της τριγωνομετρίας για τους μαθητές της Β Λυκείου. Για απευθείας αποθήκευση πατήστε: εκφωνήσεις - απαντήσεις Σημείωση : Μερικά ερωτήματα ta εμπνεύστηκα από παλαιά διαγωνίσματα του lisari.blogspot.com

Ένα 4x4 στον 82ο διαγωνισμό lisari με βιβλία που μόλις κυκλοφόρησαν!

  Για  82η φορά  αδιάκοπα οι εκδοτικοί οίκοι και οι συγγραφείς προσφέρουν τα βιβλία τους.  Ο θεσμός των διαγωνισμών όχι μόνο δεν σταματά αλλά συνεχίζει με τους ίδιους ρυθμούς.  Οι αναγνώστες, οι συγγραφείς και οι εκδοτικοί οίκοι έχουν αγκαλιάσει το θεσμό και δεν γίνεται να σταματήσει!  Οι  ΕΚΔΟΣΕΙΣ ΚΟΣΜΟΣ και οι αγαπητοί συγγραφείς προσφέρουν τα νέα τους βιβλία Επανάληψης στη Γ΄ Λυκείου!   4 + 4 νικητές του διαγωνισμού θα αποκτήσουν  τα βιβλία . Λίγα λόγια για το βιβλίο του "Παναγιώτη Νικολόπουλου" Στόχος του παρόντος βιβλίου είναι να παρέχει τα εφόδια για μια ολοκληρωμένη επανάληψη κατά το τελικό στάδιο της προετοιμασίας ενός υποψήφιου μαθητή για τις εισαγωγικές εξετάσεις στα ανώτατα ιδρύματα.  Βασική προϋπόθεση για τη μελέτη του παρόντος βιβλίου είναι η κατανόηση της θεωρίας και των ασκήσεων του σχολικού βιβλίου. Όπως επίσης απαιτείται η ευχέρεια των μαθητών σε βασικές μεθοδολογίες και εφαρμογές , που θα έχουν διδαχθεί από τους ικ...